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A Refinement of the Crystal Structure of Glycine*

By Ricsarp E. MarsH

Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.

(Recesved 17 December 1957)

The crystal structure of glycine, originally determined by Albrecht & Corey in 1939, has been refined
on the basis of complete three-dimensional intensity data obtained from molybdenum X-radiation.
The structural parameters for the heavy atoms, including anisotropic temperature factors, were
refined by difference maps and least-squares methods; the positions of the hydrogen atoms were
located from a difference map. The final R factor was 0-:063 for 1867 observed reflections and the
standard deviations in the positional parameters of the heavy atoms are about 0-001 A.

The bond distances and angles are close to those reported by Albrecht & Corey, with the excep-
tion of the C-N bond, which is found to be 1:474 A rather than 1-39 A. The apparent C~H and N-H

distances are about 0-9 A.

Introduction

The crystal structure of glycine, Hf NCH,COO-, was
first determined by Albrecht & Corey (1939). The
structure was solved by Patterson and Patterson—
Harker maps, and was refined by trial-and-error
methods. Although three-dimensional intensity data
(copper radiation) were used for the Patterson maps,
the refinement was based entirely on zonal data. Un-
fortunately, for a small molecule glycine is sur-
prisingly ill-suited for two-dimensional refinement,
since there is no direction of projection which does not
involve serious overlap.

A surprising result obtained by Albrecht & Corey
was the value 1:39+0-02 A for the C-N distance—
a value shorter by about 0-08 A than that normally
found in amino acids and peptides. Furthermore, their
results indicated that, although two of the hydrogen
atoms of the NH; group are involved in normal
hydrogen bonding with neighboring oxygen atoms,
the third hydrogen atoms forms a ‘bifurcated’ bond
with two adjacent oxygen atoms. In view of these
surprising features, a redetermination of the structure
of this simplest of all amino acids was in order.

It has seemed worth while to put some special effort
into this redetermination, with a view not only
towards obtaining accurate parameters for the heavier
atoms and locating, if possible, the hydrogen atoms,
but also towards learning something concerning the
accuracy to which ordinary X.ray diffraction tech-
niques may be pushed.

Experimental

(1) Refinement of the unit-cell parameters

Large single crystals of glycine (the usual, or «,
form) were readily grown by slow evaporation of
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aqueous solutions. They were elongated in the ¢
direction and showed pronounced cleavage perpendic-
ular to b. One crystal was ground to a cylinder about
3 mm. in length and 1-2 mm. in diameter; this was
used for photographs about the ¢ axis. A second crystal
was shaped into an approximate sphere about 1 mm.
in diameter by rolling it between thumb and forefinger,
the slight moisture on the fingers being sufficient to
dissolve the rough edges; this crystal was used for
photographs about the a, b, and [101] axes.

Accurate values for the unit-cell dimensions were
obtained from three Straumanis-type rotation photo-
graphs taken about the b, ¢, and [101] axes, respec-
tively. The copper X-ray tube was badly contaminated
with iron, so that a number of the reflections used in
the determination of cell constants were due to iron
rather than copper radiation. The photographs were
measured with the help of a traveling microscope and
a calibrated steel scale; the effective camera radius
varied from 4-981 to 5-002 em. for the three photo-
graphs. No eccentricity or absorption effect was
apparent.

Two or three high-angle reflections were chosen on
each film and were indexed on the basis of the unit-cell
dimensions reported by Albrecht & Corey. In all, seven
reflections having Bragg angles greater than 70° were
chosen; of these, three were of copper radiation and

Table 1. Spacing data for glycine

Rotation

axis hkl  Radiation (sin? 6), (sin? 0). Weight

470 Fe Ko, 0-98760  0-98759 81

c 1,12,0 Fe Ko, 0-98330  0-98326 38%

1,150 Cu Koy 0-95783  0-95794 24

[101] 2,142 CuKx, 0-93646  0-93636 17

4,104 CuKex, 0-91352  0-91356 13

b 204 Fe Ku, 0-98058  0-98058 52

503 Fe K, 0-93797 0-93797 17

* This reflection was very weak and the reported weight
includes a factor of 0-64 as well as the standard factor 1/sin? 26.
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four were of iron. The spacings of the K«; components
were measured and used in a least-squares determina-
tion of the four unit-cell parameters. Values of sin? 0
for these seven reflections and their assigned weights
are listed in Table 1; the output cell parameters are

Table 2. Unit-cell dimensions for glycine
(4 (Cu Ko,) = 1-54051 A; 2 (Fe Ko;) = 1-93597 A)

This investigation Albrecht & Corey

a 5-10204-0-0008* A 510 A
b 11-9709-+0-0017* A 11-96 A
¢ 545754 0-0015* A 545 A
B 111° 42-3/4-1-0'* 111° 38/

* Estimated limits of error set at about five times the
standard deviations calculated in the least-squares treatment.

listed in Table 2, together with the values reported
by Albrecht & Corey.

The density calculated on the basis of four molecules
in the unit cell is 1-610 g.cm.~3; the observed density
has been reported in the literature as 1-606 (Low &
Richards, 1952) and as 1-607 (Curtius, 1882) g.cm.—3.

(ii) Collection of intensity data

Equi-inclination Weissenberg photographs were
taken with Mo K« radiation for layer lines zero
through seven from crystals rotated about ¢, @, and
[101]. Three films were used for each exposure, with
thin copper foil interspersed to bring the film factor
up to about 3-5; for most layer lines, two exposures of
different duration were taken. Intensities were esti-
mated by visual comparison with intensity strips
prepared from the same crystals. Empirical film factors
were obtained, and found to vary in the expected
manner with the equi-inclination angle.

The intensities were corrected for Lorentz and
polarization effects. Correlation factors for the various
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exposures were then obtained by comparing intensity
values from each set of films with those from all sets
from the other two rotation axes and taking sub-
jectively-weighted averages. Finally, F2 values, on an
arbitrary scale, were obtained by taking averages
(again, subjectively weighted) of the values observed
about the three different axes. All reflections within
the molybdenum sphere—about 5400—were covered,
of which 1919 were strong enough to be observed.
Of these, 965 were observed on photographs taken
about all three axes, 588 were observed about two
axes, and 366 were observed about only one axis.
Values for the observed intensity ranged from about
2 to 11,000.

In order to assess the uncertainties in the observed
structure factors, comparisons were made among the
F? values for all reflections which were observed about
more than one axis. The estimated relative standard
deviations averaged about 5%, for reflections of mod-
erate intensity, increasing to about 109, for the strong
reflections and to about 209, for the very weak re-
flections. This pattern of observational discrepancies
was the basis of the weighting function used in the
least-squares refinement of the positional parameters.

Refinement of the atomic parameters

The atomic positional parameters were refined by
means of electron-density and difference projections
on to (010), (100), and (101); through six three-
dimensional structure-factor and difference-map cy-
cles; and, finally, through two structure-factor least-
squares cycles. Individual anisotropic temperature
factors were included for the heavy atoms, beginning
with the two-dimensional calculations; they were not
optimized in the final least-squares treatments.
Positional parameters for the hydrogen atoms were
obtained from a three-dimensional difference map.

Fig. 1. Electron-density projections on to (010): (a) calculated from the copper intensity data of Albrecht & Corey; (b) calcu-
lated from the molybdenum data of the present investigation. The contours are at intervals of 2 e.A~%; the 2 e.A2

contour is broken.
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A REFINEMENT OF THE CRYSTAL STRUCTURE OF GLYCINE

Table 3. Atomic parameters obtained from two-dimensional refinements

656
z y z o
C, 0-0760 0-1247 0-0642 0:0125
C, 0-0655 0-1453 0-7880 0-0125
N 0-3030 0:0905 0-7410 0-0120
0Oy - 0-3060 0-0936 0-2350 0-0145
0O, 0-8538 0-1400 0-1082 00175

(i) Two-dimensional refinements

The starting parameters for the two-dimensional
refinements were those of Albrecht & Corey (1939).
From these parameters, signs for the structure factors
of the type %0l were calculated; these signs were
used in the preparation of an electron-density projec-
tion on to (010), in which all observed 40! terms were
included. This projection is shown in Fig. 1(b). For
comparison, a second electron-density projection on to
(010), based on the structure factors observed by
Albrecht & Corey and listed in their Table 2, was
calculated; it is shown in Fig. 1(z). The increased
resolution obtained from the molybdenum intensity
data of the present investigation, as compared with
the copper data of Albrecht & Corey, is clearly ap-
parent.

The x and z parameters indicated by the (010)
projection were used in the calculation of 0! structure
factors, and approximate scale and isotropic tem-
perature factors were assigned. The R factor for these
69 reflections was 0-149. A subsequent (010) difference
projection showed only small shifts for the positional
parameters, but gave indications of highly anisotropic
temperature factors, particularly for the oxygen
atoms. Accordingly, preliminary values for the in-
dividual temperature-factor anisotropies were as-
signed, the temperature factors being expressed in the
form

T = exp — (ocih2+ﬂ¢k2+ yilz-i- 6zhk+81kl+7];kl) .

Attention was then turned to the Okl reflections,
from which an electron-density projection on to (100)
and two structure-factor difference-map cycles were
calculated. A second difference projection on to (010)
and a structure-factor difference-map cycle, using data
of the type kkk, completed the two-dimensional work.
The atomic parameters at this stage of refinement are
listed in Table 3.

(ii) Three-dimensional refinements

With the exception of the final structure-factor
least-squares cycles, which were carried out on a
Datatron computer, the three-dimensional caleula-
tions were made on conventional IBM equipment,
including a 604 Electronic Calculating unit. The first
set of structure factors, calculated from the parameters
in Table 3, led to an R factor of 0-131 for the observed
reflections; they were used in the calculation of the
first three-dimensional difference map. This and the
subsequent difference maps were evaluated at inter-

B % o] e

7
0-0025 0-0100 0 0-0125 0
0-0030 0-0105 0 0-0130 0
0-0035 0-0075 0 0-0075 0
0-0040 0-0115 0 0-0120 0
0-0045 0-0150 0 0-0175 0

vals of @[30, b/60, and ¢/30, by use of the M-card
system; accordingly, it was necessary to omit about
100 observed reflections having % or I greater than 10
or k greater than 20.

The first difference map indicated shifts in the
positional parameters averaging about 0-003 A; more
significant were the indicated changes in the individual
temperature factors. In particular, it was evident that
the temperature-factor anisotropies should be mark-
edly increased for the oxygen atoms. Approximate
values for the changes in the scale and temperature-
factor parameters were obtained by the method of
Leung, Marsh & Schomaker (1957)*, and a second
set of structure factors led to an R factor of 0-117.
Another difference-map structure-factor cycle reduced
R to 0-109.

At this point, the contributions of the hydrogen
atoms were calculated. The parameters chosen for the
two methylene hydrogen atoms were calculated on the
basis of tetrahedral bond angles and C-H distances of
1-00 A; the parameters for the ammonium hydrogen
atoms were those indicated by the first three-dimen-
sional difference map, which led to N-H distances of
about 0-88 A and to a roughly tetrahedral configura-
tion about the nitrogen atom. An isotropic tempera-
ture factor with B = 2-0 A% was assigned to each of
the five hydrogen atoms. The inclusion of these
hydrogen-atom contributions led to a significant im-
provement in the agreement of the low-order data.

It was now apparent that the observed structure
factors for a number of strong reflections were too
small, indicating extinction effects. Accordingly, the
F, values were multiplied by the correction factor
V{1/(1—KI,)}, where I, is the observed intensity; the
value for K was determined empirically. This correc-
tion was applied to 119 observed structure factors,
of which 63 were changed by more than 19 and 8
by more than 10%. After including these extinction
corrections and the hydrogen-atom contributions, the
R factor was 0-092.

A third difference map was then calculated; it was
much flatter than the first two, but again indicated
that the major source of the discrepancies between
observed and calculated structure factors lay in the
assignment of temperature-factor parameters. These
were re-adjusted and the structure factors were re-
calculated; R dropped to 0-077. A fourth difference
map indicated only small changes in the temperature-

* The equations for the temperature-factor corrections are
not exact when the input atoms are not isotropic.
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factor and positional parameters; the next set of
structure factors led to an R factor of 0-072.

A difference map was then calculated with F,
values from which the hydrogen-atom contributions
had been omitted, and including only those terms with
k and ! less than 5 and k less than 10. The positions
of the five hydrogen atoms were clearly apparent on
this map; they lay in regions with maximum electron
density ranging from 0-75 to 0-90 e.A-3, whereas
there were no other regions of density greater than
0-3 e.A-3. A composite drawing of this map is shown

\ He H,
Z A\

X ———

1

Fig. 2. A composite drawing of the three-dimensional difference
map in which the hydrogen-atom contributions were
omitted from the F, values. The contours are at intervals
of 1 e.A~2, beginning with the } e.A—3 contour.

in Fig. 2, and the indicated hydrogen-atom parameters
are listed in Table 4.

Table 4. The final hydrogen-atom parameters

Atom oz Y z
H, 0-286 0-100 0-570
H, 0-457 0-119 0-837
H, 0-298 0-020 0-763
H, 0-080 0-220 0-771
H; 0-898 0-118 0-671

At this stage of the investigation, a Datatron digital
computer became available. The computer had pre-
viously been programmed for structure-factor and
least-squares calculations on structures with point
groups 2 or m (Pasternak, 1956), and the program
was readily modified to accommodate the remaining
monoclinic space groups. This program accepts com-
plete anisotropic temperature factors for each atom,
but only the positional parameters are optimized.

The weighting function used in the least-squares
calculations was derived from the estimated standard

deviations in the F, values (see section ‘Experimental’),
the values for Jw being taken inversely proportional
to the expected uncertainty in F,. The explicit weight-
ing function was:

Yw = 35/F,(1+0-0032F%) for F,>53,
Yw = 60 for F,<53.

Two additional factors were included in Jw: the
factor )n, where n (= 1,2, or 3) is the number of
rotation axes about which the observation was made,
and a subjective factor (sometimes equal to zero) for
observations which, for reasons of extinction, spot
shape, contamination with white-radiation streaks, or
extreme weakness, were of doubtful validity. Finally,
for computational convenience, the values of |/w were
rounded off to a single integer.

The first set of structure factors calculated on the
Datatron computer led to an R factor—including
only those reflections with Jw == 0—of 0-076. The
structure factors differed slightly from those of the
previous set for three reasons: (1) the hydrogen-atom
parameters had been changed slightly; (2) the atomic
form factors of Hoerni & Ibers (1954) were used in
place of those of McWeeny; (3) the atomic form fac-
tors were stored in the computer as linear interpola-
tion tables, and for a few very small regions in recip-
rocal space the interpolated form factors could be in
error by nearly 5%. Because of a programming error,
the indicated least-squares shifts from this calculation
were not sensible; accordingly, the structure factors
were used in the calculation of a final three-dimensional
difference map. This map indicated shifts in the posi-
tional parameters averaging about 0-001 A and shifts
in the temperature-factor parameters averaging about
29,; furthermore, it indicated that the change to
Hoerni-Ibers form factors had somewhat improved
the over-all pattern of agreement. The most significant
feature of this map—and one which was also apparent
on the previous maps—was the presence of a negative
region of about 0-6 e. A-3 at, the position of the nitrogen
atom and of two smaller positive regions at the posi-
tions of the oxygen atoms, indicating that the use of
form factors for neutral N and O atoms was inap-
propriate. The implied charge effect was not taken into
account in the final structure-factor calculations,
although it would apparently account for the relatively
poor agreement in some low-order reflections.

The improved temperature-factor parameters were

Table 5. Final positional and temperature-factor parameters
(The temperature factor for each atom is of the form

T; = exp — (h?-+ Bik2-+yil? -+ Sihle-+ ekl -+ nikl))

Atom z Y z 10 1048 104y 104§ 104 10%y
C, 0-07542 0-12478 0-06605 157 22 115 —10 150 —10
C, 0-06536 0-14499 0-78711 156 32 118 20 130 16
N 0-30135 0-08980 0-74113 164 38 108 34 130 12
0, 0-30583 0-09427 0-23553 205 50 115 45 138 28
0, 0-85224 0-14154 0-10711 185 56 190 8 230 —~20
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Table 6. Observed and calculated structure factors

The three columns in each group contain the values, reading from left to right, of k, 100F,, and 100F.. Reflections indicated
by a dagger (1) were given zero weight in the final least-squares calculation
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used in two structure-factor least-squares cycles. After
the first cycle the author exercised his privilege of
checking the observed intensities of reflections showing
poor agreement; a few of these observed intensities
(or their indices) were found to be in error. The final
structure-factor least-square calculation was then
made; the maximum parameter shift was 0-0014 A
and the average shift was 0-0004 A. The final para-
meters, which include the shifts indicated in the last
least-squares caleulation,* are listed in Table 5.

The observed and calculated structure factors are
listed in Table 6.

Accuracy of the results

The final R factor, calculated for 1867 observed re-
flections of non-zero weight, is 0-063. Aside from the
observational uncertainties, the major sources of dis-
agreement between observed and calculated structure
factors probably are, in order of importance: (1)
residual-charge effects on the nitrogen and oxygen
atoms; (2) incomplete refinement of the temperature-
factor parameters, including those of the hydrogen
atoms; (3) use of inappropriate form factors, due to
bond effects (which could be partially, but not entirely,
compensated for by the temperature-factor para-
meters) and to the linear interpolation scheme used
in the Datatron program.

15

25

Fig. 8. Structure-factor discrepancies.

Discrepancies AF, averaged over all reflections within a
range of F, values, are plotted against the mean F, value
for that range. The crosses refer to the final structure-factor
calculations; here, AF = |F,—F,|. The circles refer to the
observational discrepancies implied by the disagreements
between F? values measured about three different crystal
axes ¢; here, AF = |F%—ﬁ2[+2F¢,, where F2 (= F2) is the
average of the three measurements F% The solid line is
proportional to the inverse of the weighting function Vw
used in the least-squares refinements. The units are elec-
trons per unit cell.

* Only the diagonal terms of the normal equations are
calculated in the least-squares routine, although in the present
case the x—z cross terms would be large and, in view of the large
temperature-factor anisotropies, not easily predictable. In the
first least-squares, the magnitude of the x-z cross term was
estimated; the observed effects of the parameter shifts on the
least-squares totals were then used to calculate more accurate
values for the cross terms which were included in the normal
equations of the second least-squares.
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A comparison of the final structure-factor agree-
ment with that expected from the statistics of the
observations is shown in Fig. 3. Here the discrepancy
|AF| between F, and F., averaged over a group of
reflections, is plotted against #,; for comparison, the
discrepancies arising from the statistics of the observa-
tions (see section ‘Experimental’) are also plotted. In
addition, the pattern of uncertainties used as the basis
of the weighting function is shown as a solid line in
Fig. 3; this curve is proportional to the inverse of the
weighting function /w. It is apparent that the refine-
ment is nearly, but not exactly, as complete as could
be expected from the accuracies of the observations.
Accordingly, the weighting scheme which was used
in the least-squares refinement of the positional
parameters, while not perfect, is clearly appropriate.

The standard deviations in the positional para-
meters of the carbon, nitrogen, and oxygen atoms,
calculated from the residuals of the last structure-
factor least-squares cycle, range from 0-0007 A to
0-0010 A, the larger values being associated with the
y parameters. Since the heavier atoms have the larger
temperature factors, the uncertainties are roughly the
same for all five heavy atoms. It seems appropriate,
then, to estimate the limit of error as 0-0035 A; this
corresponds to limits of error of about 0-005 A in the
apparent bond distances and 0-3° in the bond angles.
The estimated limit of error in the apparent hydrogen-
atom positions is 0-06 A.

The limits of error in the temperature-factor para-
meters, judging from the appearances of the difference
maps, are probably around 0-1 A2 in B units.

Discussion of the results

(i) Bond distances and angles

The bond distances and angles involving th e heavy
atoms are listed in Table 7 and shown in Fig. 4; the
values in parentheses have been corrected for the
rocking effects implied from the temperature-factor

H3

Fig. 4. Dimensions of the glycine molecule. The values in
parentheses have been corrected for libration effects implied
by the temperature-factor anisotropies.
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Table 7. Bond distances and bond angles

This Albrecht & This Albrecht &
Bond investigation Corey Angle investigation Corey
C-0, 1-252 (1-261) A 127 A Cy-C-0, 117-4° 119°
C~0, 1-255 (1-265) 1-25 Co—Ci—0, 117-1 119
C,—C, 1-523 1-52 0,-C,-0, 125-5 122
Cy-N 1-474 1-39 C,-C-N 111-8 112

anisotropics.* For comparison, the values reported by
Albrecht & Corey are also listed in Table 7. With the
exception of the C-N bond, the molecular dimensions
found in the present investigation are close to those
reported by Albrecht & Corey; the C~N bond, on the
other hand, is longer by 0-08 A and is close to the
values reported for other amino acids.

Bond distances and angles involving the hydrogen
atoms are listed in Table 8. Although all the bond

Table 8. Bond distances and angles tnvolving
the hydrogen atoms

N-H, 0924 Cy-N-H,  110°
N-H, 085 C;-N-H, 110
N-H, 085 Co-N-H, 111
H,-N-H, 106
H,-N-H, 106
C,-H, 091 H,-N-H, 113
Co-H, 091
C-C,-H, 106
C-C,-H, 108
N-C,-H, 109
N-C,-H, 110
H-Cp-H, 112

angles involving hydrogen atoms are within 4° of the
expected tetrahedral values, the average C-H distance
—0-91 A—and the average N-H distance—0-87 A—

are both 0'16 A shorter than the normal single-bond
distances. This difference is far greater than the
estimated limit of error in the present determination
(0:06 A), and seems to indicate that the effective
centers of electron density of the hydrogen atoms are
significantly displaced toward the adjacent atoms.
Similar effects were observed in a two-dimensional
analysis of salicylic acid (Cochran, 1953); on the other
band, a two-dimensional analysis of «-pyridone
(Penfold, 1953) indicated more normal C-H and N-H
distances, in agreement with the later findings of
McDonald (1956) and Cochran (1956).

The electron densities associated with the hydrogen
atoms in glycine (see Fig.2) are roughly spherical;
furthermore, the density distributions along the N-H

* The directions of maximum temperature factor for the
two oxygen atoms lie within 5° of normal to the respective
C,—O bonds, and it has accordingly seemed appropriate to
subtract the total temperature factor of C; from those of the
oxygen atoms and to assume that the remainders represent
the rocking motions of the oxygen atoms relative to C,. For
each oxygen atom the principal component of this remainder
has & magnitude of approximately 2 A2 in B units and a
direction approximately normal to the plane of the carboxyl
group; only this principal component has been teken into
account in calculating the bond shortening. No corrections
were applied to the C,—~C, and C,-N distances.

and C-H bonds are approximately Gaussian. It is
apparent that the negative region around the nitrogen
atom in the difference map, caused by the failure to
compensate for the charge effect, could alter only
slightly the apparent positions of H,, H,, and Hj;
no such effect pertains to H, and Hj. It is perhaps
worth while to point out that in the present case,
because the structure has a relatively small over-all
temperature factor, it has been possible to obtain
intensity data out to a relatively small spacing and the
electron densities associated with the hydrogen atoms
have been clearly separated from the temperature-
factor effects of the heavy atoms; such a separation
is often not possible with copper intensity data. In-
deed, if the apparent shortening of the C-H and N-H
bonds is anomalous, owing to incorrect collection or
interpretation of the data, the reason for the anomaly
is not readily apparent.

Atoms Cy, C,, O; and O, are nearly coplanar, the
central carbon atom C; being only 0-005 A from the
least-squares plane (calculated by the method of
Schomaker, Waser, Marsh & Bergman (1958) with all
four atoms weighted equally). The nitrogen atom is
0-436 A out of this plane.

(ii) The hydrogen bonding

Hydrogen-bond distances and angles are given in
Table 9. The hydrogen-bond arrangement is essentially

Table 9. Hydrogen-bond distances and angles

N-0O; 2:768 A C,-N-0, 118-0°
H-0, 187 N-H-0, 168
N-O; 2-850 C,-N-0; 116-1
H,-0, 203 N-H,-0, 163
N-0;  2-949 C,-N-Oi’ 1558
N-0;’  3-074 Co-N-03’ 93-0
H-0;' 244 N-H,-0;" 120
Hy-0;'  2:29 N-H,-0;" 155

that described by Albrecht & Corey. Strong N-H - - - O
bonds involving H; and H, hold the molecules together
in the ac plane (see Fig. 5); the third hydrogen atom
of the ammonium group, H, is situated between two
neighboring oxygen atoms, forming a weak, ‘bifur-
cated’ bond in the b direction. The geometry of the
‘bifurcated’ bond is essentially that pictured by
Albrecht & Corey in their Fig. 13: although the
nitrogen atom is closer to the neighboring O, atom
than to the O, atom, the angle of attack is less favor-
able; accordingly, the hydrogen atom H, is ap-
preciably closer to O, than to O;.
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Fig. 5. A packing drawing showing the hydrogen bonds that
link the molecules into layers parallel to (010).

(iii) The temperature factors

The temperature-factor parameters for the five
heavy atoms were transformed into parameters related
to the principal axes of the ellipsoids of vibration
(Rollett & Davies, 1955); the magnitudes of these
principal axes and their direction cosines relative to
the unit-cell axes are listed in Table 10. Schematic

Table 10. Magnitudes and directions of the principal
azxes of the vibration ellipsoids

Atom Axis ¢ B; g} g7 g3
1 1-564 0-833 —0-417 0-647
Cy 2 1-200 0-426 0-903 0-213
3 0-884 0-354 —0-105 —0-732
1 1-960 0-401 0-899 0-311
C, 2 1320 0-876 —0-433 0523
3 1-052 0-268 0-067 —0-794
1 2-352 0-406 0-914 0-176
N 2 1-324 0-889 —0-401 0-534
3 0-964 0-213 —0-064 —0-827
1 3-084 0-378 0-923 0-206
0, 2 1-644 0-920 —0-366 0-209
3 1-072 —0-104 0-119 —0-955
1 3-260 —0-002 0-984 —0-163
0O, 2 2-136 0-751 0-118 0-882
3 1-056 0-661 —0-130 —0-442

drawings of the ellipsoids viewed down the b and a
axes are shown in Fig. 6.

The vibrations implied by the temperature-factor
parameters are in general agreement with those that
would be expected on the basis of the geometry of the
molecule and the intermolecular packing. The smallest
component, for each atom is in a direction approx-
imately parallel to the main axis of the molecule and
to the shortest N-H - - - O hydrogen bond; the largest
component of vibration for each atom except C, is
approximately perpendicular to the plane of the
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Fig. 6. (a) Schematic drawing of the ellipsoids of thermal
vibration viewed along the b axis. The arrows are drawn
in the directions of the principal axes most nearly perpen-
dicular to the molecular plane; for all atoms except C,,
they correspond to the major axes. The lengths of the arrows
are proportional to the magnitudes of the corresponding
axes projected on to the plane of the drawing. (b) Schematic
drawing of the ellipsoids of thermal vibration viewed along
the a axis.

molecule—that is, perpendicular to the plane of the
strong hydrogen bonding. The central carbon atom Cj,
which is covalently bonded to three heavy atoms, has
the smallest average vibration, followed by C, and
the nitrogen atom; the oxygen atoms, which are each
bonded (covalently) to only one atom, have the largest
vibrations. Furthermore, O,, which is involved in the
longer and hence weaker of the two strong hydrogen
bonds, has a larger vibration than O,.

The relatively large anisotropy of C, in the ac plane
is surprising; it is conceivable that it is an artifact
caused by the electron density associated with the
C,;—0, bond, although the use of extensive high-angle
data has presumably minimized any such effect.

I should like to express my gratitude to Prof.
Robert B. Corey for his continuing interest and en-
couragement throughout the course of this investiga-
tion.
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